
CHAPTER 5: Lie Differentiation
and Angular Momentum

Jose G. Vargas

1 Lie differentiation

Kähler’s theory of angular momentum is a specialization of his approach
to Lie differentiation. We could deal with the former directly, but we
do not want to miss this opportunity to show you both, as they are
jewels. As an exercise, readers can at each step specialize the Lie theory
to rotations.

1.1 Of Lie differentiation and angular momentum

For rotations around the z axis, we have

∂

∂φ
= x

∂

∂y
− y ∂

∂x
. (1.1)

On the left of (1.1), we have a partial derivative. On the right, we have
an example of what Kähler defines as a Lie operator, i.e.

X = αi(x1, x2, ...xn)
∂

∂xi
, (1.2)

without explicitly resorting to vector fields and their flows. See section 16
of his 1962 paper. Incidentally, ∂/∂xi does not respond to the concept of
vector field of those authors. For more on these concepts in Cartan and
Kähler, see section 8.1 of my book “Differential Geometry for Physicists
and Mathematicians”. Contrary to what one may read in the literature,
not all concepts of vector field are equivalent.

One would like to make (1.2) into a partial derivative. When I had
already written most of this section, I realized that it was not good
enough to refer readers to Kähler’s 1960 paper in order how to do that;
until one gets hold of that paper (in German, by the way), many readers
would not be able to understand this section. So, we have added the last
subsection of this section to effect such a change into a partial derivative.
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Following Kähler, we write the operator (1.1) as χ3 since we may
extend the concept to any plane. We shall later use

χk = xi
∂

∂xj
− xj ∂

∂xi
, (1.3)

where (i, j, k) constitutes any of the three cyclic permutations of (1, 2, 3),
including the unity. Here, the coordinates are Cartesian.

Starting with chapter 2 posted in this web site (the first one to be
taught in the Kähler calculus phases (II and III) of the summer school),
we have not used tangent-valued differential forms, not even tangent
vector fields. Let us be more precise. We will encounter expressions
that can be viewed as components of vector-valued differential 1−forms
because of the way they transform when changing bases. But those com-
ponents are extractions from formulas arising in manipulations, without
the need to introduce invariant objects of which those expressions may
be viewed as components. The not resorting to tangent-valued quanti-
ties will remain the case in this chapter, even when dealing with total
angular momentum; the three components will be brought together into
just one element of the algebra of scalar-valued differential forms.

1.2 Lie operators as partial derivatives

Cartan and Kähler defined Lie operators by (1.2) (in arbitrary coordi-
nate systems!) and applied them to differential forms. A subreptitious
difficulty with this operator is that the partial derivatives take place un-
der different conditions as to what is maintained constant for each of
them. This has consequences when applied to differential forms.

In subsection 1.8, we reproduce Kähler’s derivation of the Lie deriva-
tive as a single partial derivative with respect to a coordinate yn from
other coordinate systems,

X = αi(x)
∂

∂xi
=

∂

∂yn
. (1.4)

His proof of (1.4) makes it obvious why he chose the notation yn

Let u be a differential form of grade p,

u =
1

p!
ai1...ipdx

i1 ∧ ... ∧ dxip , (1.5)

in arbitrary coordinate systems. Exceptionally, summation does not
take place over a basis of differential p−forms, but over all values of the
indices. This notation is momentarily used to help readers connect with
formulas in in Kähler’s 1960 paper.
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Our starting point will be

Xai1...ip = αi(x)
∂ai1...ip
∂xi

=
∂ai1...ip
∂yn

. (1.6)

1.3 Non-invariant form of Lie differentiation

In subsection 1.8, we derive

Xu =
1

p!
αi∂ai1...ip

∂xi
dxi1 ∧ ... ∧ dxip + dαi ∧ eiu, (1.7)

with the operator ei as in previous chapters.
Assume that the αi’s were constants. The last term would drop out.

Hence, for Xi given by ∂/∂xi and for u given by ai1...ipdx
i1 ∧ ... ∧ dxip ,

we have

Xi(ai1...ipdx
i1 ∧ ... ∧ dxip) =

∂(ai1...ipdx
i1 ∧ ... ∧ dxip)

∂xi
=
∂ai1...ip
∂xi

dxi1...ip ,

(1.8)
where dxi1...ip stands for dxi1 ∧ ... ∧ dxip . This allows us to rewrite (1.7)
as

Xu =
1

p!
αi

[
∂(ai1...ipdx

i1...ip)

∂xi

]
+ dαi ∧ eiu, (1.9)

It is then clear that

Xu = αi ∂u

∂xi
+ dαi ∧ eiu, (1.10)

In 1962, Kähler used (1.10) as starting point for a comprehensive treat-
ment of lie differentiation.

The first term on the right of (1.10) may look as sufficient to represent
the action of X on u, and then be overlooked in actual computations.
In subsection 1.8, we show that this is not so. We now focus on the first
term since it is the one with which one can become confused in actual
practice with Lie derivatives.

Notice again that, if the αi’s are constants —and the constants
(0, 0, ..1, 0, ...0) in particular— the last term in all these equations van-
ishes. So, we have

X(cu) = c
∂u

∂xi
, (1.11)

for a equal to a constant c. But

X [a(x)u] = a(x)
∂u

∂xi
(Wrong!)
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is wrong. When in doubt with special cases of Lie differentiations, resort
to (1.10).

The terms on the right of equations (1.7) to (1.10) are not invariant
under changes of bases. So, if u were the state differential form for a
particle, none of these terms could be considered as properties of the
particle, say its orbital and spin angular momenta.

1.4 Invariant form of Lie differentiation

Kähler subtracted αiω k
i ∧ eku from the first term in (1.10) and simul-

taneously added it to the second term. Thus he obtained

Xu = αidiu+ (dα)i ∧ eiu, (1.12)

since

αi ∂u

∂xi
− αiω k

i ∧ eku = αidiu, (1.13)

and where we have defined (dα)i as

(dα)i ≡ dαi + αiω k
i . (1.14)

One may view dαi + αkω i
k as the contravariant components of what

Cartan and Kähler call the exterior derivative of a vector field of com-
ponents αi. By “components as vector”, we mean those quantities which
contracted with the elements of a field of vector bases yield the said ex-
terior derivative. Both differential-form-valued vector field and vector-
field-valued differential 1−form are legitimate terms for a quantity of
that type. The corresponding covariant components are

(dα)i = dαi − αhω
h

i . (1.15)

If you do not find (1.15) in the sources from which you learn differential
geometry, and much more so if your knowledge of this subject is con-
fined to the tensor calculus, please refer again to my book “Differential
Geometry for Physicists and Mathematicians”. Of course, if you do not
need to know things in such a depth, just believe the step from (1.14)
to (1.15). We are using Kaehler’s notation, or staying very close to it.
Nevertheless, there is a more Cartanian way of dealing with the contents
of this and the next subsections. See subsection 1.7.

In view of the considerations made in the previous sections, we fur-
ther have

Xu = αidiu+ (dα)i ∧ eiu (1.16)

All three terms in (1.12) and (1.16) are invariant under coordinate trans-
formations. The two terms on the right do not mix when performing a
change of basis. This was not the case with the two terms on the right
of (1.7) and (1.10), even though their form might induce one to believe
otherwise.
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1.5 Action of a Lie operator on the metric’s coeffi-
cients

Following Kähler we introduce the differential 1−form α with compo-
nents αi, i.e.

α = αkdx
k = gikα

idxk. (1.17)

If the αi were components of a vector field, the αk would be its covariant
components. But both of them are here components of the differential
form α. We define diαk by

(dα)i = (diαk)dxk. (1.18)

Hence, on account of (1.15),

diαk ≡ αi,k − αhΓ h
i k. (1.19)

Therefore,

diαk + dkαi = αi,k + αk,i − αhΓ h
i k − αhΓ h

k i (1.20)

In a coordinate system where αi = 0 (i < n) and αn = 1, we have

αi,k = (gpiα
p),k = gpi,k α

p = gni,k , (1.21)

and, therefore,
αi,k +αk,i = gni,k +gnk,i . (1.22)

On the other hand,

αlΓilk + αlΓkli = 2Γink = gni,k + gnk,i − gik,n, (1.23)

From (1.20), (1.22) and (1.23), we obtain

dkαi + diαk =
∂gik
∂xn

. (1.24)

1.6 Killing symmetry and the Lie derivative

When the metric does not depend on xn, (1.24) yields

dkαi + diαk = 0. (1.25)

We then have that
eidα = −2(dα)i. (1.26)

Indeed,

eidα = eid(αkdx
k)] = ei[(αk,m − αm,k)(dxm ∧ dxk)] = (αk,i − αi,k)dxk,

(1.27)
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where the parenthesis around dxm∧dxk is meant to signify that we sum
over a basis of differential 2−forms, rather than for all values of i and k.
By virtue of (1.18), (1.19) and (1.25), we have

2(dα)i = (diαk − dkαi)dx
k = [(αi,k − αhΓ h

i k)− (αk,i − αhΓ h
k i)]dx

k.
(1.28)

We now use that Γ h
i k = Γ h

k i in coordinate bases, and, therefore,

2(dα)i = (αi,k − αk,i)dx
k = −eidα. (1.29)

Hence (1.26) follows, and (1.16) becomes

Xu = αidiu−
1

2
eidα ∧ eiu. (1.30)

Notice that we have just got Xu in pure terms of differential forms,
unlike (1.16), where (dα)i makes implicit reference to the differentiation
of a tensor field.

An easy calculation (See Kähler 1962) yields

−2eidα = dα ∨ u− u ∨ dα. (1.31)

Hence,

Xu = αidiu+
1

4
dα ∨ u− 1

4
u ∧ dα, (1.32)

which is our final expression for the Lie derivative of a differential form
if that derivative is associated with a Killing symmetry.

1.7 Remarks for improving the Kähler calculus

The Kähler calculus is a superb calculus, and yet Cartan would have
written it if alive. The main concern here is the use of coordinate bases.
We saw in chapter one the disadvantage they have when compared with
the orthonormal ωi’s; these are differential invariants that define a dif-
ferentiable manifold endowed with a metric. In this section, the disad-
vantage lies in that one needs to have extreme care when raising and
lowering indices, which is not a problem with orthonormal bases since
one simply multiplies by one or minus one. Add to that the fact that
dxi does not make sense since there are not “covariant curvilinear coor-
dinates”. On the other hand, ωi is well defined.

Consider next the Killing symmetry, (1.25). The dkαi are associated
with the covariant derivative of a vector field. But they could also be
associated with the covariant derivatives of a differential 1-form. Indeed,
we define (diα)k by

diα = (αk,i − αlΓ
l

k i)dx
k ≡ (diα)kdx

k. (1.33)
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But
dkαi ≡ αk,i − αhΓ h

k i. (1.34)

Thus
(diα)k = dkαi (1.35)

and the argument of the previous two sections could have been car-
ried out with covariant derivatives of differential forms without invoking
components of vector fields.

1.8 Derivation of Lie differentiation as partial dif-
ferentiation

Because the treatment of vector fields and Lie derivatives in the modern
literature is what it is, we now proceed to show how a Lie operator as
defined by Kähler (and by Cartan, except that he did not use this termi-
nology but infinitesimal operator) can be reduced to a partial derivative.

Consider the differential system

∂xi

∂λ
= αi(x

1, ... xn), (1.36)

the αi not depending on λ. One of n independent “constant of the mo-
tion” (i.e. line integrals) is then additive to λ. It can then be considered
to be λ itself. Denote as yi (i = 1, n− 1) a set of n− 1 such integrals,
independent among themselves and independent of λ, to which we shall
refer as yn. The yi’s (i = 1, n) constitute a new coordinate system and
we have

xi = xi(y1, , yn). (1.37)

In the new coordinate system, the Lie operator reads X = βi∂/∂yi. Its
action on a scalar function is

βi ∂f

∂yi
= αl ∂f

∂xl
=
∂xl

∂λ

∂f

∂xl
=

∂f

∂yn
. (1.38)

We rewrite u (given by (1.5)), as

u =
1

p!
ai1...ip

∂xi1

∂yi1
∂xip

∂yip
dyk1 ∧ ... ∧ dykp , (1.39)

and then

∂u

∂yn
=

1

p!

∂ai1...ip
∂yn

∂xi1

∂yi1
∂xip

∂yip
dyk1 ∧ ... ∧ dykp+

+
1

(p− 1)!
ai1...ip

∂

∂yn

(
∂xi1

∂yk1
dyk1

)
∂xi2

∂yk2
∂xip

∂ykp
dyk2 ∧ ... ∧ dykp .

(1.40)
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We now use that

∂ai1...ip
∂yn

=
∂ai1...ip
∂xi

∂xi

∂yn
= αi∂ai1...ip

∂xi
(1.41)

and that

∂

∂yn

(
∂xi1

∂yk1
dyk1

)
=

∂

∂yk1

(
∂xi1

∂yn

)
dyk1 = d

(
∂xi1

∂yn

)
= dαi1 . (1.42)

Hence

Xu =
∂u

∂yn
=

1

p!
αi∂ai1...ip

∂xi
dxi1...ip +

1

p!
ai1...ipdα

i ∧ dxi2 ∧ ...∧ dxip . (1.43)

and finally

Xu =
1

p!
αi ∂u

∂xi
+ dαi ∧ eiu, (1.44)

2 Angular momentum

The components of the angular momentum operators acting on scalar
functions are given by (1.3), and therefore

αk = −xjdxi + xidxj, (2.1)

and
dαk = −dxj ∧ dxi + dxi ∧ dxj = 2dxi ∧ dxj ≡ 2wk. (2.2)

Hence

χku = xi
∂u

∂xj
− xj ∂u

∂xi
+

1

2
wk ∨ u−

1

2
u ∧ wk. (2.3)

The last two terms constitute the component k of the spin operator. It
is worth going back to (1.7) and (1.10), where we have the entangled
germs of the orbital and spin operator, if we replace χwith χk. It does
not make sense to speak of spin as intrinsic angular momentum until u
represents a particle, which would not be the case at this point.

Kähler denotes the total angular momentum as K + 1, which he
defines as

(K + 1)u =
3∑

i=1

χiu ∨ wi. (2.4)

He then shows by straightforward algebra that

−K(K + 1) = χ2
1 + χ2

2 + χ2
3. (2.5)

He also develops the expression for (K + 1) until it becomes

(K + 1)u = −
∑
i

∂u

∂xi
∨ dxi ∨ rdr+

∑
i

xi
∂u

∂xi
+

3

2
(u− ηu) + gηu (2.6)
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and also

(K + 1)u = −ζ∂ζu ∨ rdr +
∑
i

xi
∂u

∂xi
+

3

2
(u− ηu) + gηu, (2.7)

where η is as in previous chapters, where ζ reverses the order of all the
differential 1−form factors in u and where g ≡ dxi ∧ ei. This expression
for (K + 1)u is used in the next section.

3 Harmonic differentials in E3 − {0}
As could be expected, the equation ∂u = 0 (which in E3−{0} coincides
with ∂∂u = 0) has an infinite variety of solutions. One seeks solutions
that are proper functions of the total angular momentum operator. One
becomes more specific and specializes to those whose coefficients are
harmonic functions of the Cartesian coordinates. One need only focus
on those that belong to the even subalgebra, since we can obtain the
other ones by product of the even ones with the unit differential form of
grade three. One recovers generality by forming linear combinations.

Those from the even subalgebra can be written as u = a + v, where
a and v are differential 0−form and 2−form respectively. Kähler shows
that the action of the differential operator K on these differential forms
if homogeneous of degree h is given by

Ku = −(h+ 1)a+ (h+ 1)v − 2da ∧ rdr. (3.1)

Kähler shows that for these u to be proper differentials of K with
proper value k it is necessary and sufficient that the following equations
be satisfied

−(h+ 1)a = ka, (h+ 1)v − 2da ∧ rdr = kv. (3.2)

We stop the argument at this point, having shown a role that the oper-
ator K plays in finding the sought solutions.

We may retake the argument at some point in the future.

4 The fine structure of the hydrogen atom

5 Entry point for research in analysis with the Kähler
calculus
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